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An additional numerical search for periodic orbits using the e�cient
approach from [1] is conducted. The same quadratic search grid with step-
size 3.2−14 as in [1] is used. The scale-invariant periods T ∗ are now longer -
T ∗ < 200. 421562 i.c.s corresponding to 210038 periodic solutions of type (II)
(presented by two di�erent i.c.s.) and 1486 solutions of type (I) (presented
by one i.c.) are found. The found i.c.s are computed with Newton's method
up to convergence with residual less than 10−60. They are shown with small
black dots in Figure 1. The i.c.s from paper [2] for periods T ∗ < 200 are
presented by red dots. These solutions are rediscovered and therefore there
is one small black dot on each red dot. The i.c.s from [2] for T ∗ > 200 are
in blue. The stability regions computed on a relatively coarse grid with step-
size 2−9 are in yellow. The stability regions' points (in yellow) are de�ned as
in [3], i.e. they are the points for which the scale-invariant escape time T ∗

esc

is greater than some long upper time limit, meaning that this time limit is
insu�cient for escape. Here we choose the upper time limit to be 2000 (not
too large number), i.e. T ∗

esc > 2000 for stable points. The escape criterion is
as in [3], namely the maximum distance between bodies rmax > 5d, where
d = 3/|E| is the average triple system size.

Note however, that the yellow regions have to be regarded qualitatively, as
(1) a �ner grid should be considered, (2) the results depend on the considered
upper limit of the time and the escape criterion, and (3) a further accuracy
veri�cation is also needed. It is also important to remark that the results for
the stability regions qualitatively match those in [3].

As revealed in [2], due to the sensitivity of the solutions on the initial
conditions, we need to use a high-order method applied with high precision in
order to follow the trajectories for long enough time. So, using high precision
is a crucial decision for searching periodic orbits. However, we need more
than using high precision for an e�cient implementation of the search-grid
method in combination with the Newton's method. The e�ciency depends
also on the nonlinear equation we solve, as shown in [1].
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Now we will give a simple Lyapunov exponents' argument, which tries to
explain the observed high e�ciency of the �half period� approach in [1] and
the obtained huge number of periodic i.c.s. Let us assume unstable periodic
orbits and that for small separation d(t) = ∥p(t) − p̃(t)∥2 between adjacent
trajectories the exponential law of divergence is satis�ed:

d(t) ≈ d(0)eλt, λ− the Lyapunov exponent

Here p(t) is a given unstable periodic orbit and p̃(t) is an approximation of
it. What is the e�ect of the integration time division by two, i.e. the e�ect
of solving the Euler equation at t = T/2 instead of solving the periodic
equation at t = T? The bene�t is not simply reducing the computational
time by two, but much more. We have a �square root e�ect� on the distance
between adjacent trajectories, meaning that:

d(T/2) ≈ d(0)
√
eλT , T − the period

Let us take for example d(0) ≈ 10−4 and take eλT ≈ 108. Then d(T/2) ≈ 1,
but d(T ) ≈ 104. In the �rst case we can expect convergence of Newton's
method. In the second case the above approximate exponential low is in fact
not valid, the trajectories are already so �mixed� at t = T for d(0) ≈ 10−4,
that Newton's method does not work (regardless that we have computed the
trajectories exactly). Note that to obtain a similar result for the example case
above by solving the standard periodic equation, we have to take d(0) ≈ 10−8,
which means to use so �ne search grid, that the high precision computations
are so time consuming that they are practically impossible. Of course, each
captured solution by solving the Euler equation is tested after that for conver-
gence with Newton's method for the standard periodicity equation, but now
the initial conditions are already accurate enough and the convergence test
always passes.
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Figure 1 (Distribution of i.c.s in the initial velocities' plane.
Stability regions as de�ned in [3] are in yellow.)


